Ocean Warming, More than Acidification, Reduces Shell Strength in a Commercial Shellfish Species during Food Limitation
نویسندگان
چکیده
Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units) and warming (ambient temperature +4 °C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1)). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.
منابع مشابه
The Impact of Ocean Acidification on Aquatic Organisms
When carbon dioxide dissolves in oceans it forms carbonic acid which triggers chemical reactions that reduce the pH (increasing the acidity) while reducing the availability of buffers such as carbonates. Most water dwelling organisms particularly fish depend on their chemoreceptors to detect the odor of food, finding mates for reproduction, predators/ prey recognition, homing clues etc. When ch...
متن کاملFuture Oceanic Warming and Acidification Alter Immune Response and Disease Status in a Commercial Shellfish Species, Mytilus edulis L.
Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmat...
متن کاملAn Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term fa...
متن کاملOcean acidification and global warming impair shark hunting behaviour and growth
Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of t...
متن کاملCan Shellfish Adapt to Ocean Acidification?
In the Pacific Northwest, oyster aficionados have likely tasted Chris Langdon’s scientific handiwork. Since 1996, his Molluscan Broodstock Program at Oregon State University has been breeding plump, fast-growing, and hardy oysters as stock for the $250 million West Coast oyster industry. But in the past several years, the program has taken on an additional goal: identifying oysters that are mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014